| 16 INFRARED SPECTROPHOTOMETRY         | Page 1 of 5  Amendment Designator: A |  |
|---------------------------------------|--------------------------------------|--|
| Division of Forensic Science          |                                      |  |
| CONTROLLED SUBSTANCES TRAINING MANUAL | Effective Date: 15-June-2005         |  |

#### 16 INFRARED SPECTROPHOTOMETRY

# 16.1 Objectives

- 16.1.1 To familiarize the trainee with the theory and application of infrared spectrophotometry in drug analysis
- 16.1.2 To familiarize the trainee with the FTIR instrumentation and software used in the laboratory

### 16.2 Modes of Instruction

- 16.2.1 Self-directed study through reading assignments and worksheets
- 16.2.2 Presentations and demonstrations
- 16.2.3 Practical exercise

#### 16.3 Reference

- 16.3.1 Moffat, A. C., et al., editors. Clarke's Analysis of Drugs and Poisons. London: The Pharmaceutical Press, 2004, pp. 328-345.
- 16.3.2 *Basic Training Program for Forensic Chemists*, U.S. Department of Justice, Drug Enforcement Administration, Office of Science and Technology, pp. 5-17 through 5-29.
- 16.3.3 DFS Controlled Substances Procedures Manual, FTIR Section.
- 16.3.4 Suzuki, Edward M., Ph.D. "Forensic Applications of Infrared Spectroscopy", in Saferstein, Richard, Ph.D., editor. Forensic Science Handbook, Volume III. Englewood Cliffs, N. J.: Regents/Prentice Hall, 1993, pp. 71-195.
- 16.3.5 Cooper, James. Spectroscopic Techniques for Organic Chemists. New York: John Wiley & Sons, 1980, pp. 1-52.
- 16.3.6 Smith, A. Lee. *Applied Infrared Spectroscopy*. New York: John Wiley & Sons, 1979.
- 16.3.7 Mills, Terry, III and Roberson, J. Conrad. *Instrumental Data for Drug Analysis, Second Edition*. New York: Elsevier, 1987.
- 16.3.8 Computer-based Georgia Bureau of Investigation (Mills) library of drug compounds.
- 16.3.9 Silverstein, R. M. et al. *Spectrometric Identification of Organic Compounds*. New York: John Wiley & Sons, 1991.
- 16.3.10 Thermo Nicolet Instrument Manuals.

## 16.4 Assignments

- 16.4.1 Completion of required reading assignments (16.3.1, 16.3.3)
- 16.4.2 Study questions
- 16.4.3 Practical exercises

| 16 INFRARED SPECTROPHOTOMETRY         | Page 2 of 5                  |  |  |
|---------------------------------------|------------------------------|--|--|
| Division of Forensic Science          | Amendment Designator: A      |  |  |
| CONTROLLED SUBSTANCES TRAINING MANUAL | Effective Date: 15-June-2005 |  |  |

## 16.5 Study Questions

- 16.5.1 What is infrared spectrophotometry? Describe the theory behind its use as an identification technique including types of information obtained and specificity.
- 16.5.2 Draw a schematic diagram for a double-beam IR.
- 16.5.3 Describe the electromagnetic spectrum.
  - 16.5.3.1 What is the upper and lower limit on the infrared region of the electromagnetic spectrum?
  - 16.5.3.2 What region is the most useful analytically?
  - 16.5.3.3 What is the standard range of most instruments?
- 16.5.4 Define the following terms:
  - Wave
  - Wavelength
  - Wavenumber
  - Frequency
  - Dipole moment
  - Absorption
  - Transmittance
  - Overtone
  - Harmonic vibration
  - Combination band
  - Fundamental vibration
  - Monochromator
  - Interferometer
  - Homonuclear
  - Amplitude
  - Centerburst
- 16.5.5 Draw a block diagram of the FTIR and describe the function of the major components.
  - 16.5.5.1 Describe the different types of radiation sources for FTIR instruments.
  - 16.5.5.2 Describe the different types of detectors available for FTIR instruments.
  - 16.5.5.3 Sketch a Michaelson interferometer and describe how it works.
- 16.5.6 What is "Fourier Transform" and how does it apply to IR?
- 16.5.7 Explain the theory behind the Attenuated Total Reflectance (ATR) sampling unit including the differences between single-bounce and multi-bounce units.
  - 16.5.7.1 Describe any differences in the spectra obtained using ATR vs. regular transmittance.
  - 16.5.7.2 Explain the function of the ATR correction within the software including when it is permissible to use a corrected spectra in case work.
- 16.5.8 What is meant by the "fingerprint region" of an IR spectrum? Why is it significant?

# 16 INFRARED SPECTROPHOTOMETRY Page 3 of 5 Division of Forensic Science Amendment Designator: A CONTROLLED SUBSTANCES TRAINING MANUAL Effective Date: 15-June-2005

- 16.5.9 Can IR differentiate optical isomers? Diastereomers? Structural isomers?
- 16.5.10 Why is polystyrene used to check the function of the FTIR?
- 16.5.11 Which organic functional groups correspond to the following absorption frequencies?
  - 3639-3633 cm<sup>-1</sup>
  - 2990-2850 cm<sup>-1</sup>
  - 1650-1510 cm<sup>-1</sup>
  - 1750-1740 cm<sup>-1</sup>
  - 770-690 cm<sup>-1</sup>
  - 760-540 cm<sup>-1</sup>
- 16.5.12 Why is KBr used in the preparation of solid samples?
- 16.5.13 What two conditions must be met in order for infrared absorption to occur?
- 16.5.14 What is the intensity of an IR absorption proportional to?
- 16.5.15 Explain Beer's Law.
- 16.5.16 What are the two basic categories of molecular vibration?
- 16.5.17 What are the four types of bending?
- 16.5.18 What is meant by vibrational coupling?
- 16.5.19 Describe the differences between dispersive and non-dispersive instruments.
- 16.5.20 What are the advantages of FTIR over dispersive IR?
- 16.5.21 Which will vibrate with higher frequency, C-H bond or a C-C bond and why?
- 16.5.22 What does hydrogen bonding do to the vibrational frequency of a hydroxyl or an amine group?
- 16.5.23 Describe the absorptions for the following groups:
  - -O-H
  - -N-H
  - >C=O
  - -C-O-
  - -C-H
  - -C≡N
  - -NO<sub>2</sub>
  - Aromatic Substitutions
- 16.5.24 What is polymorphism and how does it influence IR spectra?
- 16.5.25 Describe how to prepare the following:
  - KBr pellet
  - Cast film
  - Sandwiched thin film

| 16 INFRARED SPECTROPHOTOMETRY         | Page 4 of 5                  |  |  |
|---------------------------------------|------------------------------|--|--|
| Division of Forensic Science          | Amendment Designator: A      |  |  |
| CONTROLLED SUBSTANCES TRAINING MANUAL | Effective Date: 15-June-2005 |  |  |

- Film deposited on KBr
- Nujol mull
- 16.5.26 How does over or under-grinding KBr/sample mixtures influence the IR spectra?
- 16.5.27 What model IR does your laboratory use?
  - 16.5.27.1 What radiation sources and detectors are used in the FTIR and its attachments in your laboratory?
- 16.5.28 What problems are encountered in using IR as a quantitative technique?
- 16.5.29 What causes a sloped baseline?
- 16.5.30 Explain baseline correction and how it is performed.
- 16.5.31 What is spectral subtraction and under what conditions is it possible?
- 16.5.32 What are the differences between background subtraction and spectral subtraction?
- 16.5.33 What is the relationship between resolution and data point spacing?
- 16.5.34 What resolution are samples normally run in your laboratory?
- 16.5.35 What computer libraries are available in your lab and what are the resolutions of the spectra contained in them?
- 16.5.36 Describe how a spectrum is auto-saved and/or saved.
- 16.5.37 Describe how ATR analysis can be run on powders, liquids and mixtures.
- 16.5.38 Explain any macros used in your lab and how they work.
- 16.5.39 What are the advantages/disadvantages of a GC/MS compared to an IR when used for identification purposes?
- 16.5.40 Describe the preventative maintenance schedule and the QA/QC procedures performed on the IR including the VAL-Q software.
- 16.5.41 Describe as to a jury how an FTIR operates.

## 16.6 Practical Exercises

- 16.6.1 Using the standards in the laboratory, prepare the following samples, analyze via FTIR, and discuss the differences in the spectra:
  - Methamphetamine HCl, Phentermine HCl, Ephedrine HCl (ATR)
  - Cocaine base, Cocaine HCl (KBr pellets and ATR)
  - MDA, MDMA, MDEA (KBr pellets or ATR)
- 16.6.2 Obtain a mixture from the TC. Using spectral subtraction determine the two components present. Devise and carry out a physical separation of the two components and verify with FTIR.
- 16.6.3 When available, run standards of methamphetamine and phentermine on the GC/FTIR.
- 16.6.4 Obtain samples from the TC including procaine HCl, cocaine base/procaine mixture, Amoxicillin and gamma-butyrolactone and run using the ATR.

| 16 INFRARED SPECTROPHOTOMETRY  Division of Forensic Science |                                       |                                  | DMETRY Page 5 of 5      |              |  |
|-------------------------------------------------------------|---------------------------------------|----------------------------------|-------------------------|--------------|--|
|                                                             |                                       |                                  | Amendment Designator: A |              |  |
|                                                             | CONTROLLED SUBSTANCES TRAINING MANUAL |                                  | Effective Date:         | 15-June-2005 |  |
| 16.7                                                        | Modes                                 | of Evaluation                    |                         |              |  |
|                                                             | 16.7.1                                | Written examination              |                         |              |  |
|                                                             | 16.7.2                                | Court exercise (mini-mock trial) |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         | ♦ Eı         |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |
|                                                             |                                       |                                  |                         |              |  |